If it's not what You are looking for type in the equation solver your own equation and let us solve it.
145=16t^2+16t
We move all terms to the left:
145-(16t^2+16t)=0
We get rid of parentheses
-16t^2-16t+145=0
a = -16; b = -16; c = +145;
Δ = b2-4ac
Δ = -162-4·(-16)·145
Δ = 9536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9536}=\sqrt{64*149}=\sqrt{64}*\sqrt{149}=8\sqrt{149}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{149}}{2*-16}=\frac{16-8\sqrt{149}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{149}}{2*-16}=\frac{16+8\sqrt{149}}{-32} $
| 75/45=p/100 | | 3x^2+24x-156=0 | | 76(3J+24)=5/6j+84 | | 24-8y-12=0 | | 4x+5/3=15 | | -u/9=-25 | | 2(3x-5)/4+10=14 | | 12x-(8*3)-12=0 | | 6x+19=4x+13 | | -6x+7.5=4.5 | | (1/2)/x=1/3 | | -14x+42=-70 | | f(5)=1.9 | | 45=40/x | | (2x-3)=(2x-5) | | -5(5x-3)=65 | | 18n-4=50 | | 49=20n-9 | | -143=710-(615+x) | | x-1/2=-13/2+2x | | (6x+7)(5x-6)=0 | | 5-(3x-10)=4-2(4x+2) | | 1/3y+2.25-2/3y=1.2 | | 11n-6=9n-3 | | O.85x=200 | | 17-4x+x-3=8+4x-8 | | -x/7+5=48/7-2× | | -10p=150 | | (X-2)(x-9)=-8 | | 2-1/4x+1/2x=44 | | -3x=4x+14 | | 1/7+10/7x=71/7 |